

Bachelor of Science (Honours) Geology under CBCS

PATNA UNIVERSITY, PATNA

Programme Code:

Programme Outcomes

At the completion of the programme, students will attain the ability to:

- PO1: Develop understanding of Earth/Geological Sciences.
- PO2: Apply the knowledge of allied disciplines in understanding geological science

PO3: Develop insightful understanding of Environment with emphasis on sustainable development.

Programme Specific Outcomes

At the completion of the programme, students will attain the ability to:

PSO1: develop an understanding of dynamics of Earth and its interior, geomorphological processes that shapes earth

PSO2: impart knowledge of genesis of various rocks and earth's energy resources including metals non-metals, hydrocarbons etc

PSO3: carry out field work and work as a team, communicate and learn project management.

Course Structure

Semester – I

Sl. No.	Name of the Course	Type of Course	L-T-P	Credit	Marks
1	Fundamentals of the Earth System (Th)	CC-1 (Th)	4-1-0	4	100
2	Fundamentals of Earth System (P)	CC-1 (P)	0-0-6	2	100
3	Mineralogy and Crystallography (Th)	CC-2 (Th)	4-1-0	4	100
4	Mineralogy and Crystallography (P)	CC-2 (P)	0-0-6	2	100
5	English Communication/MIL	AECC-1	2-1-0	2	100
6	Generic Elective- 1 (Th)	GE-1 (Th)	4-1-0	4	100
7	Generic Elective- 1 (P)	GE-1 (P)	0-0-6	2	100
				Total o	credit - 20

Semester – II

Sl. No.	Name of the Course	Type of Course	L-T-P	Credit	Marks
1	Mineralogy and Optical Mineralogy(Th)	CC-3 (Th)	4-1-0	4	100
2	Mineralogy and Optical Mineralogy (P)	CC-3 (P)	0-0-6	2	100
3	Structural Geology (Th)	CC-4 (Th)	4-1-0	4	100
4	Structural Geology (P)	CC-4 (P)	0-0-6	2	100
5	Environmental Science	AECC-2	2-1-0	2	100
6	Generic Elective- 2 (Th)	GE-2 (Th)	4-1-0	4	100
7	Generic Elective- 2 (P)	GE-2(P)	0-0-6	2	100
				Total c	credit - 20

Semester – III

Sl. No.	Name of the Course	Type of	L-T-P	Credit	Marks
		Course			
1	Geomorphology (Th)	CC-5 (Th)	4-1-0	4	100
2	Geomorphology (P)	CC-5 (P)	0-0-4	2	100
3	Igneous Petrology (Th)	CC-6 (Th)	4-1-0	4	100
4	Igneous Petrology (P)	CC-6 (P)	0-0-4	2	100
5	Metamorphic Petrology (Th)	CC-7 (Th)	4-1-0	4	100
6	Metamorphic Petrology (P)	CC-7 (P)	0-0-4	2	100
7	Skill Enhancement Course- 1	SEC- 1	2-1-0	2	100
8	Generic Elective- 3 (Th)	GE-3 (Th)	4-1-0	4	100
9	Generic Elective- 3 (P)	GE-3(P)	0-0-4	2	100
			1	Total c	redit - 26

Semester – IV

Sl. No.	Name of the Course	Type of	L-T-P	Credit	Marks
		Course			
1	Sedimentology (Th)	CC-8 (Th)	4-1-0	4	100
2	Sedimentology (P)	CC-8 (P)	0-0-4	2	100
3	Stratigraphy (Th)	CC-9 (Th)	4-1-0	4	100
4	Stratigraphy (P)	CC-9 (P)	0-0-4	2	100
5	Palaeontology (Th)	CC-10 (Th)	4-1-0	4	100
6	Palaeontology (P)	CC-10 (P)	0-0-4	2	100
7	Skill Enhancement Course- 2	SEC-2	2-1-0	2	100
8	Generic Elective- 4 (Th)	GE-4 (Th)	4-1-0	4	100
9	Generic Elective- 4 (P)	GE-4(P)	0-0-4	2	100
				Tota	al credit - 26

Semester – V

Sl. No.	Name of the Course	Type of	L-T-P	Credit	Marks
		Course			
1	Hydrogeology (Th)	CC-11 (Th)	4-1-0	4	100
2	Hydrogeology (P)	CC-11 (P)	0-0-4	2	100
3	Economic Geology (Th)	CC-12 (Th)	4-1-0	4	100
4	Economic Geology (P)	CC-12 (P)	0-0-4	2	100
5	Discipline Specific Elective- 1 (Th)	DSE-1 (Th)	4-1-0	4	100
6	Discipline Specific Elective- 1 (P)	DSE-1(P)	0-0-4	2	100
7	Discipline Specific Elective- 2 (Th)	DSE- 2 (Th)	4-1-0	4	100
8	Discipline Specific Elective- 2 (P)	DSE- 2 (P)	0-0-4	2	100
				Tota	al credit - 24

Semester – VI

Sl. No.	Name of the Course	Type of	L-T-P	Credit	Marks
		Course			
1	Global Tectonics and Geodynamics (Th)	CC-13 (Th)	4-1-0	4	100
2	Global Tectonics and Geodynamics (P)	CC-13 (P)	0-0-4	2	100
3	Engineering Geology and Mineral Resources (Th)	CC-14 (Th)	4-1-0	4	100
4	Engineering Geology and Mineral Resources (P)	CC-14 (P)	0-0-4	2	100
5	Discipline Specific Elective- 3 (Th)	DSE- 3 (Th)	4-1-0	4	100
6	Discipline Specific Elective- 3 (P)	DSE- 3 (P)	0-0-4	2	100
7	Discipline Specific Elective- 4 (Project/Dissertation)	DSE- 4	0-0-6	6	100
			•	Tota	al credit - 24

Total Credits – 140

*L/T/P: number of classes per week

DSE/GE may either carry 6 credit, i.e., *Theory (4 credit) + Practical (2 credit)* format

Or

Consolidated (6 credit) for Theory only

Discipline Specific Elective Course (DSE):

Course name	L-T-P
1. Remote Sensing & GIS	4-1-4
2. Earth and Climate	5-1-0
3. Urban Geology	5-1-0
4. Fuel Geology	4-1-4
5. Environmental Geology and Geogenic Disaster	5-1-0
6. Introduction to Geophysics, Mining & Exploration Geology	5-1-0
7. River Science	5-1-0
8. Oceanography	5-1-0
9. Elements of Geochemistry	5-1-0

Generic Elective (GE):

For Geology Students		For Other Students			
Course name	L-T-P	Course name	L-T-P		
 Physics Chemistry 		1. Fundamentals of the Earth System	4-1-6		
 Botany Zoology 		2. Geomorphology and Geotectonics	5-1-0		
5. Mathematics		3. Mineralogy	4-1-6		
6. Statistics		4. Structural Geology	4-1-6		
		5. Remote Sensing & GIS	4-1-4		
		6. Environmental Geology and Geogenic Disaster	5-1-0		
		7. Petrology	4-1-4		
		8. Economic Geology &	4-1-4		
		Hydrogeology			
		9. Stratigraphy &	4-1-4		
		Palaeontology			

Skill Enhancement courses (SEC):

<u>SEMESTER – I</u> CC1 : FUNDAMENTALS OF THE EARTH SYSTEM

Course Outcomes

After the completion of the course, the students will be able to:

- **CO1:** Gain comprehensive understanding of the Earth as a planetary body.
- CO2: Explain about the plate tectonics, earthquake & volcano.
- **CO3:** Analyze Earth's surface process.

	CC1 : FUNDAMENTALS OF THE EARTH SYSTEM (Credit: 4)				
Unit	Topics to be covered	No. of Lectu res			
1	Aim, application and various branches of Geology	10			
	Solar system; Brief idea about Meteorites				
	Origin of the Earth Earth important physical parameters				
2	Earth- important physical parameters	10			
2	Age of the Earth Coological time coological	10			
	 Geological time scale Brief idea of the-<i>Atmosphere, Hydrosphere, Lithosphere, Biosphere</i> 				
3	 Bher idea of the Atmosphere, Hydrosphere, Ethosphere, Biosphere Elementary idea about the Plate tectonics. 	12			
5	 Earthquakes- causes and types 	12			
	 Internal structure of the Earth 				
	 Volcano- types and causes. 				
4	Surface processes: Weathering – <i>physical, chemical, biological</i> ; Erosion	16			
	 Brief idea of evolution of various landforms – <i>Glacial, Fluvial, Karst, Eolian</i> 				
	Introduction to Historical Geology				
	• Concept of Stratification; Fossils and Fossilization				
	TOTAL	48			

Suggested Reading :

- 1. Holmes, A.: Principles of Physical Geology.
- 2. Longwell and Flint : Introduction to Physical Geology
- 3. Dutta, A.K. : An Introduction to Physical Geology
- 4. Singh, S. : Physical Geography
- 5. Singh, Praveen : Textbook of Engineering and General Geology
- 6. Siddarth, K. : Earth's Dynamic Surface
- 7. Duff, P. M. D., & Duff, D. (Eds.). (1993). Holmes' principles of physical geology. Taylor & Francis
- 8. Emiliani, C. (1992). Planet earth: cosmology, geology, and the evolution of life and environment. Cambridge University Press.
- 9. Gross, M. G. (1977). Oceanography: A view of the earth

CC1 : FUNDAMENTALS OF THE EARTH SYSTEM (Practical) (2 credit)

Practical

- Study of topographic maps
- Contour maps
- Study of Seismic zones of India
- Geological Time Scale/ Hydrogeological Cycle

CC2 : MINERALOGY AND CRYSTALLOGRAPHY

Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** Gain basic knowledge of minerals & their properties
- **CO2:** Comprehend different non-silicate minerals
- **CO3:** Define various Crystal Structure.

	CC2 : MINERALOGY AND CRYSTALLOGRAPHY (Credit: 4)				
Unit	Topics to be covered	No. of Lectures			
1	 Minerals definition; Rock forming minerals & Ore minerals. Brief idea of <i>Ionic radii, Ionic substitution & Co-ordination number</i> Isomorphism, Polymorphism, Pseudomorphism Physical properties of the minerals: <i>Form, Color, Streak, Lustre, Cleavage, Fracture, Hardness, Specific gravity, Tenacity, Magnetic properties, Electrical properties</i> 	14			
2	 Chemical classification of minerals – native element, sulphides, oxides and hydroxides, halites, carbonate, sulphates, phosphate Structural classification of silicates. 	10			
3	 Introduction to Crystal and their Characters- <i>Crystal form, Face, Edge, Solid angle, Interfacial angle, Crystallographic axis and angles, Bravais lattice</i> Introduction to crystal parameters and symmetry elements Laws of Crystallography 	14			
4	 Fundamental idea of crystal systems. Detailed study of the following crystal systems: <i>Isometric, Tetragonal, Hexagonal</i> 	10			
	TOTAL	48			

Suggested Reading :

- 1. Berry and Mason, (1961). Mineralogy. W. H. Freeman & Co.
- 2. Dana, E.S. and Foo, W.E., (2002). A Textbook of Mineralogy
- 3. Deer, W. A., Howie, R. A., &Zussman, J. (1992). An introduction to the rock-forming minerals (Vol. 696). London: Longman.
- 4. Flint, Y., (1975). Essentials of crystallography, Mir Publishers.
- 5. Klein, C., Dutrow, B., Dwight, J., & Klein, C. (2007). The 23rd Edition of the Manual of Mineral Science (after James D. Dana). J. Wiley & Sons.
- 6. Philips, F.C., (1963). An introduction to crystallography. Wiley, New York.
- 7. Perkin D. (2010) Mineralogy. Pearson
- 8. Ram S. Sharma and Anurag Sharma (2013) Crystallography and Mineralogy Concepts and Methods. Text Book Series, Geological Society of India, Bangalore
- 9. Read, H. H., (1968) Rutley's Element of Mineralogy. Thomas Murby and Co.

CC2 : MINERALOGY AND CRYSTALLOGRAPHY (Practical) (Practical: 2 credits)

Practical

- Clinographic Projection of : Isometric System – Cube, Octahedron, Rhombdodecahedron, and Tetrahedron (+ve and –ve) Tetragonal System – 1st and 2nd order Prism with Basal pinacoids, 1st and 2nd order Pyramids, Zircon, Vesuvianite
- Study of the following minerals:

Calcite, Gypsum, Talc, Fluorite, Apatite, Topaz, Corundum, Baryte, Kyanite, Haematite, Galena, Bauxite, Psilomelane, Garnet, Nepheline, Beryl, Andalusite, Sillimanite, Tourmaline, Magnetite, Pyrite, Chromite, Pyrolusite.

SEMESTER- II CC3 : MINERALOGY AND OPTICAL MINERALOGY Course Outcomes

After the completion of the course, the student will be able to:

CO1: Comprehend basics of Optics and its behavior within minerals

CO2: Gain knowledge and classification of silicate mineral groups

	CC3: MINERALOGY AND OPTICAL MINERALOGY (Credit: 4)				
Unit	Topics to be covered				
1	 Elementary concepts of Light, Propagation of light through minerals Polarization Double refraction 	6			
2	 Petrological Microscope and its function Construction of Nicol prism Optical accessories and its uses 	12			
3	 Isotropism and Anisotropism Important optical properties: <i>Refractive index, Pleochroism, Pleochroic haloes, Extinction and extinction angle, Birefringence, Interference colours, Optical indicatrix</i> 	12			
4	 Detailed study of the following rock forming mineral groups with reference to their Structure, Composition, Classification, Physical and Optical properties, Paragenesis: Olivine, Pyroxene, Amphibole, Mica, Feldspar, Silica polymorphs Detailed study of the following minerals Hornblende, Tremolite, Actinolite, Hypersthene, Augite, Quartz, Orthoclase, Microcline, Muscovite, Biotite, 	18			
	TOTAL	48			

Suggested Reading :

- 1. Berry and Mason, (1961). Mineralogy. W. H. Freeman & Co.
- 2. Dana, E.S. and Foo, W.E., (2002). A Textbook of Mineralogy
- 3. Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the rock-forming minerals (Vol. 696). London: Longman.
- 4. Klein, C., Dutrow, B., Dwight, J., & Klein, C. (2007). The 23rd Edition of the Manual of Mineral Science (after James D. Dana). J. Wiley & Sons.
- 5. Kerr, B. F. (1995). Optical Mineralogy. McGraw-Hill, New York.
- 6. Perkin D. (2010) Mineralogy. Pearson
- 7. Read, H. H., (1968) Rutley's Element of Mineralogy. Thomas Murby and Co.
- 8. Verma, P. K. (2010). Optical Mineralogy (Four Colour). Ane Books Pvt Ltd.

CC3: MINERALOGY AND OPTICAL MINERALOGY (Practical) (Practical: 2 credits)

Practical :

- Megascopic studies of the following minerals : Quartz, Orthoclase, Microcline, Plagioclase, Muscovite, Biotite, Hornblende, Tremolite, Actinolite, Diopside, Augite, Enstatite, Olivine,
- Microscopic study of common rock forming minerals.
 Quartz, Microcline, Plagioclase, Muscovite, Biotite, Hornblende, Augite, Diopside, Olivine

CC4 : STRUCTURAL GEOLOGY Course Outcomes

After the completion of the course, the student will be able to:

- CO1: Gain knowledge of factors responsible for generating structural features of rocks.
- **CO2:** Analyse strain ellipse & ellipsoid.
- CO3: Understand the concept & mechanism of folds, faults, Joints & Unconformity.

CC4 : STRUCTURAL GEOLOGY (Credit: 4)				
Unit	Topics to be covered	No. of Lectures		
1	 Elementary concepts of structural geology Idea of Stress and Strain Ductile vs. Brittle deformation Lineation, Foliation, Cleavage. 	12		
2	 Attitude of beds, Dip and Strike Outliers and inliers Outcrops and outcrop patterns Clinometer and Brunton compass and its Uses Joint - definition and types 	12		
3	 Fold – definition and its classification Causes and mechanism of Folding Recognition and significance of Fold 	10		
4	 Fault – definition and its classification Mechanism of Fault Recognition and significance of Fault Unconformity- definition and types Recognition and geological significance of Unconformity 	14		
	TOTAL	48		

- 1. Billings, M. P. (1987) Structural Geology, 4th edition, Prentice-Hall
- 2. Davis, G. R. (1984) Structural Geology of Rocks and Region. John Wiley
- 3. Hills, E.S., (1963) Elements of Structural Geology. Farrold and sons, London.
- 4. Lahee F. H. (1962) Field Geology. McGraw Hill
- 5. Park, R. G. (2004) Foundations of Structural Geology. Chapman & Hall.
- 6. Pollard, D. D. (2005) Fundamental of Structural Geology. Cambridge University Press.
- 7. Ragan, D. M. (2009) Structural Geology: an introduction to geometrical techniques (4th Ed). Cambridge University Press (For Practical)
- 8. Ramsay, J.G. (1967) Folding and fracturing of rocks. Mcgraw-Hill, New York

CC4 : STRUCTURAL GEOLOGY (Practical) (Practical: 2 credits)

Practical :

- Study of geological maps
- > Drawing of geological section and description of their geological history.
- > Plotting of Dip & Strike on the stereo-net.

<u>SEMESTER – III</u> CC5 : GEOMORPHOLOGY

Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** Explain and classify different Landforms.
- **CO2:** Outline the geomorphology of Indian subcontinents.

CC5 : GEOMORPHOLOGY (Credit: 4)		
Unit	Topics to be covered	No. of Lectures
1	 Definition, Scope and Fundamental concepts of Geomorphology Endogenic geomorphic processes; Diastrophism Exogenic geomorphic processes; Weathering, mass wasting, Erosion 	12
2	 Geomorphic cycle and their interpretations Brief study of the following <i>Causes of Rejuvenation, Peneplanation, Relief of ocean floor</i> Drainage patterns and their significance 	12
3	 Geological work of natural agencies: Wind action and Aeolian landforms Underground water and Karst topography Glacial processes and landforms Fluvial processes and landforms 	12
4	 Geomorphic features of India <i>Extra Peninsular, Peninsular, Indo-Gangetic plain</i> Brief study of the Physiography and geomorphology of Bihar 	12
	TOTAL	48

Suggested Reading :

- 1. Chorley, R. J., (1984) Geomorphology. Methuen.
- 2. M.A. Summerfield (1991) Global Geomorphology. Wiley & Sons.
- 3. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology The Mechanics and Chemistry of Landscapes. Cambridge University Press.
- 4. Selby, M. J., (1996) Earths Changing Surface. Oxford University Press, UK
- 5. Thornbury, W. D., (1997) Principles of Geomorphology, Wiley eastern Limited, New Delhi
- 6. Verma, V. K., (1986) Geomorphology Earth Surface processes and form. Mcgraw Hill.

CC5 : GEOMORPHOLOGY (Practical) (Practical: 2 credits)

Practical

- > Physiographic division & drainage system on outline map of India
- > Physiographic division & drainage system on outline map of Bihar.
- Basic exercise on Drainage Pattern.
- ➤ Basics of morphometry.

CC6 : IGNEOUS PETROLOGY Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** Understand the concept of different rock types
- **CO2:** Know factors and processes of magma generation
- CO3: Comprehend various classification of igneous rocks
- **CO4:** Ex[lain the factors responsible for diversity of igneous rocks.
- CO5: Understand preliminary idea of phase-equilibria.

Unit	Topics to be covered	No. of Lectures
1	 Introduction to Petrology-distinguishing features of three types of rocks. Magma – Definition, Composition, primary magma Bowen's Reaction series: Discontinuous and Continuous series 	8
2	 Form, Structure and Texture of Igneous rock Generation and crystallization of Magma 	10
3	Plate tectonics and Magmatism Different schemes of classification of Igneous rock.	10
	• Processes of Diversification of Igneous rocks: Fractional crystallization, Gravitational segregation, Thermo- gravitational diffusion, Filter pressing, Liquid immiscibility, Assimilation & Magma mixing	
4	 Introduction to Phase rule; Study of the following Phase diagrams: Binary: An-Di, Ab-An; Ternary: Ab-An-Di Petrographic description of the following rock types : Granite, Rhyolite, Syenite, Nepheline-syenite, Monzonite, Diorite, Anorthosite, Gabbro, Basalt, Peridotite, Pyroxenite, Dunite, Trachyte and Andesite. 	20
	TOTAL	48

- 1. Huang : Petrology
- 2. Nockolds, Chinner and Kinox: Petrology for students
- 3. Harker : Petrology for students
- 4. Blatt, Ehler: Petrology (Igneous, Sedimentary and Metamorphic)
- 5. Hall : Igneous Petrology
- 6. Hyndman, W.D. : Petrology of Igneous and Metamorphic Rocks
- 7. Turner and Verhoogen : Igneous and Metamorphic Petrology
- 8. Hatch and Wells : Petrology of the Igneous Rocks
- 9. Philpotts : Principles of Igneous and Metamorphic Petrology
- 10. Philpotts, A., & Ague, J. (2009). Principles of igneous and metamorphic petrology. Cambridge University Press.

- 11. Winter, J. D. (2014). Principles of igneous and metamorphic petrology. Pearson.
- 12. Rollinson, H. R. (2014). Using geochemical data: evaluation, presentation, interpretation. Routledge.
- 13. Raymond, L. A. (2002). Petrology: the study of igneous, sedimentary, and metamorphic rocks. McGraw-Hill Science Engineering.
- 14. McBirney, A. R. (1984). Igneous Petrology. San Francisco (Freeman, Cooper & Company) and Oxford (Oxford Univ. Press),
- 15. Myron G. Best (2001). Igneous and Metamorphic Petrology,
- 16. K. G. Cox, J. D. Bell. (1979). The Interpretation of Igneous Rocks. Springer/Chapman & Hall.
- 17. Bose M.K. (1997). Igneous Petrology.
- 18. G W Tyrrell. (1926). Principles of Petrology. Springer

CC6 : IGNEOUS PETROLOGY (Practical) (Practical: 2 credits)

Practical :

- Megascopic study of the following rocks: Granite, Syenite, Pegmatite Diorite, Gabbro, Basalt, Rhyolite, Dunite, Trachyte, Obsidian, Pumice, Peridotite, Pyroxenite, Anorthosite, Norite
- Microscopic study of the following rocks: Granite, Syenite, Nepheline-syenite, Granodiorite, Diorite, Gabbro Dolerite, Basalt, Peridotite, Anorthosite.
- Classification of Igneous rocks by plotting of analyzed data on various sheets.

CC7 : METAMORPHIC PETROLOGY Course Outcomes

- **CO1:** Explain various agents of Metamorphism and types of metamorphic rocks
- CO2: Outline the basic features of rocks and able to classify different metamorphic rock
- CO3: Understand preliminary idea of inter-relationship between plate tectonics and metamorphism
- CO4: Gain knowledge of basic ideas of metamorphism and different type of metamorphic rock

	(Credit: 4)		
Unit	Topics to be covered	No. of Lectures	
1	 Aims and scope of Metamorphic Petrology Concept of Metamorphism: <i>Diagenesis, Anataxis, Palingenesis</i> Concept of Metamorphic Grade, Zones, Isograds, Index minerals 	10	
2	 Agents of metamorphism Types of Metamorphism Preliminary ideas of - metamorphic differentiation, Prograde, Retrograde, and Poly-metamorphism, paired metamorphic belts 	10	
3	 Texture of metamorphic rocks Structure of metamorphic rocks Classification of metamorphic rocks 	12	
4	Metamorphic Facies and Facies series	16	

 Plate tectonics and metamorphism Petrography of the following metamorphic rocks : Slate, Phyllite, Schists, Gneisses, Amphibolites, Granulite, Marble, Quartzite, Hornfels, Charnockite, Khondalite, Eclogite, Skarns. 	
 TOTAL	48

- 1. Tyrell, G.W. : Principles of Petrology
- 2. Huang : Petrology
- 3. Nockolds, Chinner and Kinox: Petrology for students
- 4. Harker : Petrology for students
- 5. Blatt, Ehler: Petrology (Igneous, Sedimentary and Metamorphic)
- 6. Best, M.G. : Igneous and Metamorphic Petrology
- 7. Hyndman, W.D. : Petrology of Igneous and Metamorphic Rocks
- 8. Turner and Verhoogen : Igneous and Metamorphic Petrology
- 9. Philpotts, A., & Ague, J. (2009). Principles of igneous and metamorphic petrology. Cambridge University Press.
- 10. Winter, J. D. (2014). Principles of igneous and metamorphic petrology. Pearson.
- 11. Rollinson, H. R. (2014). Using geochemical data: evaluation, presentation, interpretation. Routledge.
- 12. Raymond, L. A. (2002). Petrology: the study of igneous, sedimentary, and metamorphic rocks. McGraw-Hill Science Engineering.
- 13. Yardley, B. W., & Yardley, B. W. D. (1989). An introduction to metamorphic petrology. Longman Earth Science Series

CC7 : METAMORPHIC PETROLOGY (Practical) (Practical: 2 credits)

Practical

- Megascopic study of the following rocks: Slate, Phyllite Schist, Gneisses, Marble, Charnockite, Amphibolite, Khondalite
- Microscopic study of the following rocks: Schists, Gneisses, Amphibolite, Charnockite

<u>SEMESTER – IV</u> CC8 : SEDIMENTOLOGY

Course Outcomes

- **CO1:** Explain the different processes responsible for the formation of sedimentary rocks.
- CO2: Outline the basic features of sedimentary rocks and classify them.
- **CO3:** Identify the fundamental differences between various sedimentary environments and their significance in geological studies.

CC8 : SEDIMENTOLOGY (Credit: 4)		
Unit	Topics to be covered	No. of Lectures
1	 Processes of formation of Sedimentary rocks. Lithification and Diagenesis. Provenance & Heavy minerals 	11

2	 Elementary idea of Sedimentary Environments: <i>Physical</i> parameters and Chemical parameters Classification of sedimentary rocks 	11
3	 Texture of Sedimentary Rocks Elementary ideas of Grain Size, Particle Shape and Fabric. Clastic and Non-clastic rocks 	12
4	 Structures of Sedimentary Rocks: Primary, Secondary, Biogenic Petrographic study of the following rocks:- Conglomerate, Breccia, Sandstone – Arkose, Greywacke, Orthoquartzite, Limestone, Dolomite, Shale. 	14
	TOTAL	48

- 1. Allen, J.R.L., (1985). Principles of Physical Sedimentology. George Allen and Unwin, LondonBlatt, Ehler: Petrology (Igneous, Sedimentary and Metamorphic)
- 2. Blatt, H., Middleton, G., and Murray, R., (1980). Origin of Sedimentary rocks. Princeton Hall.
- 3. Boggs, S.: Petrology of Sedimentary Rocks, Cambridge University Press.
- 4. Collinson, J. D. & Thompson, D. B. (1988) Sedimentary structures, Unwin-Hyman, London.
- 5. Folk, R. L., (1974). Petrology of Sedimentary Rock. Hemphill Publishing Company, Austin, Texas
- 6. Harker : Petrology for students
- 7. Huang : Petrology
- 8. Nichols, G. (2009) Sedimentology and Stratigraphy Second Edition. Wiley Blackwell
- 9. Nockolds, Chinner and Kinox: Petrology for students
- 10. Pettijohn, F. J., (1984) Sedimentary rocks, Harper & Bros.
- 11. Prothero, D. R., & Schwab, F. (2004). Sedimentary geology. Macmillan.
- 12. Sengupta, S. M., (2007). Introduction to Sedimentology, CBS Publishers and Distributor, New Delhi.
- 13. Tyrell, G.W. : Principles of Petrology
- 14. Tucker, M. E. (2006) Sedimenary Petrology, Blackwell Publishing.

CC8 : SEDIMENTOLOGY (Practical) (Practical: 2 credits)

Practical

Megascopic study of the following rocks:

Conglomerate, Breccia, Sandstones – Orthoquartzite, Arkose, Greywacke, Limestone, Dolomite, Shale.

Microscopic study of the following rocks: Sandstone, Orthoquartzite, Arkose, Greywacke.

CC9 : STRATIGRAPHY

Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** apply principles of stratigraphy in various geological studies.
- **CO2:** give a brief idea of geology of India including major cratons and basins of India.
- **CO3:** present a comprehensive idea of Geological evolution of Indian continent.

CC9 : STRATIGRAPHY (Credit: 4)

Unit	Topics to be covered	No. of Lectures
1	 Principles of Stratigraphy Methods of Startigraphic correlation Brief idea about <i>Lithostratigraphy, Biostratigraphy and Chronostratigraphy</i> Brief study of – <i>cratons and mobile belts</i> 	12
2	 Brief account of the stratigraphy with special reference to classification, distribution, lithology, fossil content (if any) and economic significance of Archaean of <i>Dharwar and Singhbhum</i> Proterozoic basins: <i>Cuddapah and Vindhyan</i> 	14
3	 Brief account of the stratigraphy of the following with special reference to classification, distribution, lithology, fossils, and economic significance. Gondwana Supergroup, Jurassic of Kutch, Cretaceous of South India 	11
4	 Brief account of the stratigraphy of the following with special reference to classification, distribution, lithology, fossil content and economic significance Tertiary of Assam, Siwalik group Brief idea of important stratigraphic boundaries in India 	11
	TOTAL	48

- 1. Krishnan, M. S. (1982) Geology of India and Burma, CBS Publishers, Delhi
- 2. Doyle, P. & Bennett, M. R. (1996) Unlocking the Stratigraphic Record. John Wiley
- 3. Ramakrishnan, M. &Vaidyanadhan, R. (2008) Geology of India Volumes 1 & 2, Geological society of India, Bangalore.
- 4. Ravindrakumar (2018). Fundamentals of Historical Geology and Stratigraphy of India, Newage Publication
- 5. Valdiya, K. S. (2010) The making of India, Macmillan India Pvt. Ltd
- 6. Wadia, D., (1973). Geology of India. Mcgraw Hill

CC9 : STRATIGRAPHY (Practical) (Practical: 2 credits)

Practical :

Distribution of Startigraphic formation on the outline map of India.
 Dharwar, Singhbhum, Cudappah, Vindhyan, Gondwana

- Study of stratigraphic rocks of
 - Khondalite, Charnockite, Singhbhum Granite, Kolhan conglomerate, BHJ, BHQ, Vindhyan Sandstone, Rohtas Limestone, Porcellanite, Rajgir Quartzite, RajgirPhyllites, Talchir sandstone, Barakar sandstone, Rajmahal Traps, Talchir Shale

CC10 : PALAEONTOLOGY

Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** Identify and differentiate various types of fossils.
- CO2: Explain the different theories regarding evolution of life and mass extinctions.
- **CO3:** Understand the importance of fossils in studying past life.

CC10 :PALAEONTOLOGY

	(Credit: 4)		
Unit	Topics to be covered	No. of Lectures	
1	 Definition and Types of Fossil Modes of preservation of fossils Ichnofossils; Index fossil Uses of Fossils 	12	
2	 Theories of organic evolution Life through geologic ages Mass Extinctions 	12	
3	Classification, Morphology and Geological history: Gastropoda, Bivalvia, Cephalopoda, Brachiopoda, Trilobita	14	
4	 Significance of Gondwana flora Extinction of Siwalik mammals Microfossils and their significance 	10	
	TOTAL	48	

- 1. Cowen, R., (2000). History of Life. Blackwell Science.
- 2. Doyle, P.: Understanding Fossils: An Introduction to Invertebrate Palaeontology.
- 3. Raup, D. M., Stanley, S. M., Freeman, W. H. (1971) Principles of Paleontology
- 4. Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution 4th Edition by BlackwellPublishing.
- 5. Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons.
- 6. Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publisher
- 7. Armstrong, H. A., & Brasier, M.D. (2005) Microfossils. Blackwell Publishing.
- 8. Woods, Henry : Invertebrate Palaeontology

CC10 :PALAEONTOLOGY (Practical) (Practical: 2 credits)

Practical :

- > Identification of fossils and their geological age: *invertebrate, vertebrate, plant fossils*
- > Drawing of fossils based on morphological features.

SEMESTER – V CC11 : HYDROGEOLOGY Course Outcomes

- **CO1:** Explain the fundmentals of hydrogeology.
- **CO2:** Define the movement and distribution of groundwater.
- CO3: Differentiate between various types of hydrostratigraphic units.
- CO4: Define physio-chemical nature of groundwater

CC11 : HYDROGEOLOGY (Credit: 4)		
Unit	Topics to be covered	No. of Lectures
1	Hydrogeology: concepts, scope and its societal relevance	10

	 Hydrologic cycle: precipitation, evapo-transpiration, infiltration, run-off and subsurface movement of water Hydrogeological properties of water-bearing formation: Porosity, Permeability 	
2	 Origin and types of Groundwater: <i>Juvenile water, Connate water, Meteoric water, Vadose water</i> Vertical distribution of subsurface water; Zone of aeration and zone of saturation Water table and Piezometric surface 	10
3	 Types of Aquifer: Unconfined, Confined and Leaky aquifers. Springs and their Types Artificial recharge of groundwater 	14
4	 Physical and chemical properties of water and water quality Elementary idea of Groundwater flow; Darcy's law Groundwater resources of Bihar 	14
	TOTAL	48

- 1. Davis, S. N. and De Weist, R.J.M. 1966. Hydrogeology, John Wiley & Sons Inc., N.Y.
- 2. Hudak, P. F., (1999). Principle of Hydrogeology, Lewis Publishers
- 3. Freeze, R. A., and Cherry, J.A. (1979). Groundwater, Prentice Hall
- 4. Karanth K.R., 1987, Groundwater: Assessment, Development and management, Tata McGrawHill Pub. Co. Ltd.
- 5. Raghunath, H. M., (1987). Groundwater, New Age International
- 6. Todd, D. K. 2006. Groundwater hydrology, 2nd Ed., John Wiley & Sons, N.Y.

CC11 : HYDROGEOLOGY (Practical) (Practical: 2 credits)

Practical :

- Hydrogeological properties of Rocks
 - Granite, Basalt, Rhyolite
 - Sandstone, Limestone, Shale
 - Gneiss, Schist, Quartzite
 - Study and drawing of hydrogeological provinces of Bihar

CC12 : ECONOMIC GEOLOGY

Course Outcomes

- **CO1:** Identify and distinguish various ore minerals and their deposits.
- **CO2:** Present a comprehensive idea about genesis and distribution of major ore minerals and associated host rocks.
- **CO3:** Describe the various exploration methods for mineral deposits

CC12 : ECONOMIC GEOLOGY (Credit: 4)		
Unit	Topics to be covered	No. of Lectures
1	 Introduction to Ore, Ore mineral, gangue, Ore tenor, Cut-off grade. Forms and structure of ore deposits. Classification of Ore deposits 	10

2	• Processes of formation of mineral deposits with special reference to: <i>Magmatic Concentration</i> , <i>Hydrothermal processes</i> , <i>Supergene</i> <i>Sulphide enrichment</i>	14
3	 Processes of formation of mineral deposits with special reference to: <i>Residual deposits, Placer deposits.</i> Metallogenic epochs and provinces 	12
4	 Brief idea of relationship between Plate Tectonics and Mineral deposits. Prospecting and exploration methods - <i>Geological, Geophysical, Geochemical</i> 	12
	TOTAL	48

- 1. Jenson and Bateman: Economic Mineral Deposits
- 2. Prasad, U.: Economic Geology
- 3. Brown, C. and Dey, A.K.: Indian Mineral Wealth
- 4. Sinha and Sharma: Mineral Economics
- 5. Tarlings: Economic Geology and Geotectonics
- 6. Riley, Charles M.: Our Mineral Resources
- 7. Bagchi, Sengupta and Rao: Elements of Prospecting and Exploration
- 8. Kesler, Stephen E.: Mineral Resources, Economics and the Environment
- 9. Guilbert, J.M. and Park Jr., C.F. (1986) The Geology of Ore deposits. Freeman & Co.
- 10. Evans, A.M. (1993) Ore Geology and Industrial minerals. Wiley
- 11. Laurence Robb. (2005) Introduction to ore forming processes. Wiley.
- 12. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distribution and processing, Tata-McGraw Hill, New Delhi.
- 13. Deb, S. (1980) Industrial minerals and rocks of India. Allied Publishers.
- 14. Sarkar, S.C. and Gupta, A. (2014) Crustal Evolution and Metallogeny in India. Cambridge Publications

CC12 : ECONOMIC GEOLOGY (Practical) (Practical: 2 credits)

Practical :

- > Megascopic study of important ore and economic minerals.
 - Talc, Graphite, Gypsum, Calcite, Fluorite, Apatite, Topaz, Corundum, Beryl, Barite, Kyanite, Sillimanite, Hematite, Magnetite, Chromite, Chalcopyrite, Malachite, Azurite, Bauxite, Galena, Pyrite, , Ilmenite, Rutile, Monazite, Garnet, Asbestos, Diamond, Fire clay, and China clay.

Distribution of economic minerals on the outline map of India.

<u>SEMESTER – VI</u> CC13 : GLOBAL TECTONICS AND GEODYNAMICS

Course Outcomes

- **CO1:** Understand the various theories of geo-tectonics.
- **CO2:** Explain the tectonic framework of the earth.

CC13 : GLOBAL TECTONICS AND GEODYNAMICS (Th) (Credit: 4)		
Unit	Topics to be covered	No. of Lectures
1	 Concept of Diastrophism, Orogeny and Epirogeny Isostasy: Airy's and Pratt's Hypothesis 	10

2	 Continental Drift : Wegner's Hypothesis Evidences of Continental Drift Concept of sea floor spreading 	12
3	 Brief idea of the following: <i>Paleomagnetism, Palaeoclimate, Polar wandering, Island arcs, Rift</i> <i>Valley</i> Mountains – Types, character and origin 	14
4	 Concept of Plate tectonics. Types of Plate boundary: Convergent , Divergent and Conservative boundaries Structure and evolution of Himalayas 	12
	TOTAL	48

- 1. Badgley, P. C., (1965). Structural and Tectonic Principles, Harper & Row.
- 2. Beloussov, V.V., (1980). Geotectonics, Springer-Verlag Berlin Heinemann
- 3. Condie. Kent. C., Plate Tectonics and Crustal Evolution, Pergamon Press
- 4. Gass I.G., Understanding the Earth. Artemis Press (Pvt.) Ltd. U.K.
- 5. Moores, E. M. and Twiss, R. J., (1995). Tectonics, W. H. Freeman
- 6. Singh, S. : Physical Geography
- 7. Steers, J.A. : The Unstable Earth
- 8. Valdiya, K.S., (1984). Aspects of Tectonics, Tata McGrath Hills.
- 9. Wiley : Dynamic Earth

CC13 : GLOBAL TECTONICS AND GEODYNAMICS (Practical) (Practical: 2 credits)

Practical

- Tectonic maps of India
- Study of different plate boundaries on world map
- Study of Paleogeographic maps

CC14 : ENGINEERING GEOLOGY AND MINERAL RESOURCES

Course Outcomes

- **CO1:** Carry out the sampling for exploration and exploitation purpose of mineral deposits.
- **CO2:** Define physio-mechanicaal properties of rocks.
- CO3: Define the role of geology in the planning and construction of civil structures..
- **CO4:** Understand and describe the Genesis and distribution of major ore minerals and associated host rocks
- **CO5:** identify the major economic minerals.

CC14 : ENGINEERING GEOLOGY AND MINERAL RESOURCES (Credit: 4)		
Unit	Topics to be covered	No. of Lectures
1	 Sampling: Principle, Methods, Size and Quantity Pits, Trenches, Bore-holes and Logging Geology and mineral resources of Bihar 	10
2	Engineering properties of Rocks	14

	Role of Geology in planning and Construction of Engineering Projects: Dam site selection, Tunnels, Bridge and Road alignment	
3	• Detailed study of the following economic mineral deposits of India: Iron, Manganese, Base-metals, Coal and Petroleum, Atomic minerals	10
4	 A brief study of the physical properties, chemical composition, mode of occurrence, uses and distribution of following economic minerals in India: Galena, Chromite, Ilmenite, Rutile, Monazite, Barite, Garnet, Beryl, Graphite, Talc, Gypsum, Calcite, Fluorite, Apatite, Feldspar, Quartz, Topaz, Corundum, Diamond, Kyanite, Sillimanite, Asbestos, Fire clay, and China clay. 	14
	TOTAL	48

- 1. Bell, F.G., (2006). Basic Environmental and Engineering Geology Whittles Publishing.
- 2. Bell, F.G, (2007). Engineering Geology, Butterworth-Heineman
- 3. Brown, C. and Dey, A.K. : Indian Mineral Wealth
- 4. Deb, S. (1980) Industrial minerals and rocks of India. Allied Publishers.
- 5. Gokhale, K.V.G.K. and Rao, T.C. (1978) Ore deposits of India their distribution and processing, Tata-McGraw Hill, New Delhi.
- 6. Goodman, R.E., 1993. Engineering Geology: Rock in Engineering constructions. John Wiley & Sons, N.Y.
- 7. Johnson, R.B. and De Graf, J.V. 1988. Principles of Engineering Geology, John Wiley.
- 8. Kesler, Stephen E. : Mineral Resources, Economics and the Environment
- 9. Krynin, D.P. and Judd W.R. 1957. Principles of Engineering Geology and Geotechnique, McGraw Hill (CBS Publ).
- 10. Prasad, U. : Economic Geology
- 11. Ramakrishnan, M. &Vaidyanadhan, R. (2008) Geology of India Volumes 1 & 2, Geological society of India, Bangalore.
- 12. Riley, Charles M. : Our Mineral Resources
- 13. Sinha and Sharma : Mineral Economics
- 14. Wadia : Minerals of India
- 15. Waltham, T., 2009. Foundations of Engineering Geology (3rd Edn.) Taylor & Francis.

CC14 : ENGINEERING GEOLOGY AND MINERAL RESOURCES (Practical) (Practical: 2 credits)

Practical

- Structural problems relating to dip and strike & thickness of beds, three-point problems.
- > Megascopic study of important ore and economic minerals.
- Distribution of Economic deposits on the map of India & World

Discipline Specific Elective (DSE)

DSE1 : REMOTE SENSING & GIS

Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** Understand the basics of aerial photography and its application in Geology
- **CO2:** Explain the principles, applications of Remote Sensing and Geographic Information System.

DSE1 : REMOTE SENSING & GIS

	(Credit: 4)		
Unit	Topics to be covered	No. of Lectures	
1	 Introduction to aerial photographs; Advantages & Interpretation Types of aerial photographs and classification Scale of aerial photographs Principles of stereoscopic viewing 	12	
2	 Basic concepts in remote sensing, electromagnetic spectrum EMR interaction with atmosphere and earth surface Atmospheric windows, atmospheric effects on remotely sensed data 	10	
3	 Types of satellites and images. Sensors and their characteristics, Sensor platforms. Spatial, spectral and temporal resolution Introduction to Digital Image Processing Indian Remote Sensing satellites 	14	
4	 Introduction to GIS, Components of GIS, Hardware and software requirements Data input, Data output and visualization, Raster and vector data Geo-referencing, Map projections GPS and its applications 	12	
	TOTAL	48	

- 1. Demers, M.N., 1997. Fundamentals of Geographic Information System, John Wiley & sons. Inc.
- 2. Hoffmann-Wellenhof, B., Lichtenegger, H. and Collins, J., 2001. GPS: Theory & Practice, Springer Wien New York.
- 3. Jensen, J.R., 1996. Introductory Digital Image Processing: A Remote Sensing Perspective, Springer- Verlag.
- 4. Lillesand, T. M. & Kiefer, R.W., 2007. Remote Sensing and Image Interpretation, Wiley.
- 5. Richards, J.A. and Jia, X., 1999. Remote Sensing Digital Image Analysis, Springer-Verlag

DSE1 : REMOTE SENSING & GIS (Practical) (2 credits)

Practical :

- > Toposheet reading, Contours, spot heights
- Scale conversion: RF, linear, Verbal
- Stereoscopic study of Aerial photographs

DSE2: ENVIRONMENTAL GEOLOGY AND GEOGENIC DISASTER

Course Outcomes

- **CO1:** Understand the structure and functions of ecosystem. Natural and anthropogenic factors affecting Environment.
- CO2: Explain natural disasters and its mitigation

	DSE2 : ENVIRONMENTAL GEOLOGY AND GEOGENIC DISASTER (Credit: 6)		
Unit	Topics to be covered	No. of Lectures	
1	Introduction to Environmental geology	12	
	• Interaction between Human activities and the natural environment		
	Pollution: Point, line and area source of Pollution		

	Water Quality Parameters and BIS standards	
2	 Organic & Inorganic Pollutants Heavy Metal Pollution Remedial measures of pollution 	10
3	 Earthquakes: Causes, Effects and Mitigation Magnitude and Intensity of Earthquakes Seismic Hazard Zoning Map Volcanoes and Volcanic hazards 	12
4	 Floods: Interaction between rivers and its flood plain Flood plain mapping and zoning Landslides –Causes, Types and Mitigation 	14
5	 Cyclones- Monitoring Droughts – Meteorological, Agriculture and Hydrological types Climate change 	12
	TOTAL	60

- 1. Bell, F.G., 1999. Geological Hazards, Routledge, London.
- 2. Bryant, E., 1985. Natural Hazards, Cambridge University Press.
- 3. Keller, E. A., (1987). Environmental Geology, Shales E. Merril Publishing Co., Columbus, Ohio.
- 4. Liu, B. C., (1981). Earthquake Risk and Damage, Westview.
- 5. Montgomery, C., (1984). Environmental Geology, John Wiley and Sons, London.
- 6. Sharma, J. P., Environmental Studies, Laxmi Publications (P) Ltd., New Delhi.
- 7. Smith, K., 1992. Environmental Hazards. Routledge, London.
- 8. Subramaniam, V., 2001. Textbook in Environmental Science, Narosa International
- 9. Valdiya, K. S., (1987). Environmental Geology- Indian context. Tata Mcgraw Hill, New Delhi

DSE3 : FUEL GEOLOGY

Course Outcomes

- **CO1:** Understand the basic of coal, its types, formation and qualitative analysis.
- **CO2:** Explain of coal deposits and its geographical distribution in India.
- **CO3:** Understand the geological processes of oil and gas formation, movement, entrapment and its deposits in india.

DSE3 : FUEL GEOLOGY (Credit: 4)		
Unit	Topics to be covered	No. of Lectures
1	 Definition and origin of Coal Classification of coal Fundamentals of Coal Petrology: lithotypes, microlithotypes and macerals in coal Proximate and Ultimate analysis 	14
2	 Coal carbonization Coal Bed Methane (CBM) Distribution of Gondwana & Tertiary coal 	10
3	Chemical composition and physical properties of crudes in	12

	 nature Origin of petroleum Migration & Accumulation of Petroleum 	
4	 Basic ideas of Reservoir rocks & traps. Cap rocks- definition and general properties. Petroliferous basins of India. 	12
	TOTAL	48

- 1. Bastia, R., & Radhakrishna, M. (2012). Basin evolution and petroleum prospectivity of the continental margins of India (Vol. 59). Newnes
- 2. Bjorlykke, K., (1989). Sedimentology and petroleum geology. Springer-Verlag.
- 3. Chandra D. (2007). Chandra's Text book on applied coal petrology. Jijnasa Publishing House.
- 4. Colin R. Ward (Edited), Coal Geology and Technology.
- 5. F.K. North, Petroleum Geology, (Publishers- Allen and Unwiry.)
- 6. North, F.K., 1985, Petroleum Geology, Allen and Unain.
- 7. Shelly R.C. (2014). Elements of Petroleum geology: Third Edition, Academic Press
- 8. Singh, M.P. (Ed.) 1998 Coal and Organic Petrology. Publ. Corp. New Delhi.
- 9. Tissot B.P. and Welge, D.Il., 1986, Petroleum Formation Occurrence Springer Verla
- 10. Wilcon and Wells, Coal, Coke and Coal chemical

DSE3 : FUEL GEOLOGY (Practical) (Practical: 2 credits)

Practical :

- 1. Identification of coal samples.
- 2. Distribution of various fuel / hydrocarbon resources on outline map of India, Study of geological maps, Isopach maps and sections of important oilfields of India,

DSE4 : EARTH AND CLIMATE

Course Outcomes

- **CO1:** Explain global climate system and controlling factors.
- **CO2:** Understand atmosphere, atmospheric circulation, concept and mechanism of Indian monsoon.
- **CO3:** Develop an integrated perspective on climate change and its effect

DSE4 : EARTH AND CLIMATE (Credit: 6)		
Unit	Topics to be covered	No. of hours
1	Components of the climate system	8
	Climate controlling factors	
	• Earth's heat budget.	
2	Layering of atmosphere and atmospheric Circulation	16
	• Atmosphere and ocean interaction and its effect on climate	
	• Global oceanic conveyor belt and its control on earth's climate	
3	Mechanism of monsoon	10
	Factors associated with monsoonal intensity	
	• Effects of monsoon	
4	Response of biosphere to Earth's climate	14
	Climate Change: natural vs. anthropogenic effects	
	• Brief introduction to archives of climate change	

5	• Milankovitch cycles and variability in the climate	12
	Pleistocene Glacial-Interglacial cycles	
	• Marine isotope stages	
	TOTAL	60

- 1. Rudiman, W.F., (2001). Earth's climate: past and future. Edition2, Freeman Publisher.
- 2. Rohli, R. V., and Vega, A. J., (2007). Climatology. Jones and Barlatt
- 3. Lutgens, F., Tarbuck, E., and Tasa, D., (2009). The Atmosphere: An Introduction to Meteorology. Pearson Publisher
- 4. Aguado, E., and Burt, J., (2009). Understanding weather

DSE5 : OCEANOGRAPHY <u>Course Outcomes</u>

After the completion of the course, the student will be able to:

- **CO1:** Understand the ocean topography and global ocean circulation
- CO2: Explain atmosphere-ocean interaction and Indian monsoon system.
- **CO3:** Understand extensive marine resources and factors affecting marine life.

DSE5 : OCEANOGRAPHY (Credit: 6)		
Unit	Topics to be covered	No. of hours
1	Definitions & Scope of Oceanography	12
	• Bottom relief of Ocean floor; Hypsographic curve - continental	
	shelf, slope, rise and abyssal plains, submarine canyons	
	Introduction to Ocean Stratification/Layers	
2	Source & Nature of Marine deposits	12
	Classification of Marine Sediments	
	Methods to study Marine Sediments	
	• Laws of the Sea	
3	• Structure and chemical composition of the Atmosphere	12
	Atmosphere - Ocean Interaction	
	Concept of Coriolis Effect	
	India Monsoon System	
4	• Physical and chemical properties of sea water and their spatial	12
	variations.	
	• Residence times of elements in sea water.	
	Concept of Thermohaline circulation and Oceanic Conveyor Belt	
	 El Niño and La Niña 	
5	Primary productivity in the Oceans	12
	 Environmental Factors for Marine Life – Physical and Biological 	
	factors	
	Communities of Oceans – Pelagic and Benthic Communities	
	TOTAL	60

- 1. Garrison, Tom, 2011. Essentials of Oceanography, Brooks/Cole; International edition.
- 2. Thomas D. & Bowers D., 2012. Introducing Oceanography (Introducing Earth and Environmental Sciences); Dunedin Academic Press.
- 3. Ruddiman, W.F., 2008, Earth's Climate Past and Future, WH Freeman & Co.
- 4. Bender, M., 2013, Paleoclimate, Princeton Premiers in Climate.
- 5. Kenneth, J., 1982, Marine Geology and Geophysics.
- 6. Wright J. and Colling A., 1995, Seawater: its composition, properties and behaviors, The Open University.

DSE6 : RIVER SCIENCE

Course Outcomes

After the completion of the course, the student will be able to:

CO1: dynamic characters of a riverunderstand system.

CO2: Explain the evolution fluvial morphology and stream management.

DSE6 : RIVER SCIENCE (Credit: 6)		
Unit	Topics to be covered	No. of hours
1	Physical properties of water, sediment and channel flow	12
	• River discharge, River hydrographs (UH, IUH, SUH, GIUH) and its application in hydrological analysis.	
	Flood frequency analysis	
2	• Sediment load and sediment yield	12
	• Sediment transport processes in rivers	
	• Erosion and sedimentation processes in channel.	
3	• Quantitative analysis of network organization- morphometry	12
	• Role of drainage network in flux transfer	
	• Evolution of drainage network in geological time scale.	
4	• Patterns of alluvial rivers - braided, meandering and anabranching channels,	12
	• Dynamics of alluvial rivers	
	• Different classification approaches in fluvial geomorphology and its applications.	
5	• River response to climate, tectonics and human disturbance	12
	• Bedrock channel processes and evolution of fluvial landscapes.	
	Integrated approach to stream management	
	TOTAL	60

Suggested Reading :

- 1. Bryirely and Fryirs (2005) Geomorphology and river management. Blackwell Pub.
- 2. Davies, T. (2008) Fundamentals of hydrology. Routledge Publications.
- 3. Julien, P. Y. (2002) River Mechanics. Cambridge University Press Knighton, D. (1998) Fluvial forms and processes: A new perspective. Arnold Pubs.
- 4. Richards. K. (2004) Rivers: Forms and processes in alluvial channels. Balckburn Press.
- 5. Robert, A. (2003) River Processes: An introduction to fluvial dynamics. Arnold Publications.
- 6. Tinkler, K. J., Wohl, E. E. (eds.) 1998. Rivers over rock. American Geophyscial Union Monogrpah, Washington, DC.
- 7. Vanoni, V. A. (2006) Sedimentation Engineering. ASCE Manual, Published by American Society of Civil Engineering

DSE7 : INTRODUCTION TO GEOPHYSICS, MINING & EXPLORATION GEOLOGY

Course Outcomes

- **CO1:** Understand different components of geophysics and its applications in mining.
- **CO2:** Explain different geophysical exploration methods and estimation of natural reserve and resources

DSE7 : INTRODUCTION TO GEOPHYSICS, MINING & EXPLORATION GEOLOGY (Th) (Credit: 6)

Unit	Topics to be covered	No. of hours
1	Inter-relationship between geology and geophysics	10
	• Preliminary ideas of the geophysical anomalies	
	 Different types of survey, Scales of survey; Profiling and Sounding techniques 	
2	• Brief idea of the principles and applications of different types	14
	of geophysical methods:	
	gravity, magnetic, electrical and seismic	
3	• Resource & reserve	10
	• Mineral resources in industries	
	• A brief overview of classification of mineral deposits	
4	Principles of Prospecting and exploration	12
	• Sampling, subsurface sampling including pitting, trenching and drilling	
	Geochemical exploration.	
5	Principles of reserve estimation, density and bulk density	14
	• Factors affecting reliability of reserve estimation	
	• Reserve estimation based on geometrical models (square,	
	rectangular, triangular and polygon blocks)	
	• Regular and irregular grid patterns, statistics and error	
	estimation	
	TOTAL	60

Suggested Reading :

Γ

- 1. Outlines of Geophysical Prospecting- A manual for geologists by Ramachandra Rao, M. B., Prasaranga, University of Mysore, Mysore, 1975.
- 2. Exploration Geophysics- An Outline by Bhimasarikaram V.L.S., Association of Exploration Geophysicists, Osmania University, Hyderabad, 1990.
- 3. Dobrin, M.B. (1984) An introduction to Geophysical Prospecting. McGraw-Hill, New Delhi.
- 4. Telford, W.M., Geldart, L.P., & Sheriff, R.E. (1990). Applied geophysics (Vol.1). Cambridge university press.
- 5. Lowrie, W. (2007). Fundamentals of geophysics. Cambridge University Press.
- 6. Clark, G.B. 1967. Elements of Mining. 3rd Ed. John Wiley & Sons.
- 7. Arogyaswami, R.P.N. 1996 Courses in Mining Geology. 4th Ed. Oxford- IBH.
- 8. Moon, C.J., Whateley, M.K.G., Evans, A.M., 2006, Introduction to Mineral Exploration, Blackwell Publishing.

DSE8 : ELEMENTS OF GEOCHEMISTRY Course Outcomes

- **CO1:** Explain the key concepts of geochemistry.
- CO2: Understand the interrelation between different spheres of geochemistry.
- **CO3:** Explain various applications of geochemistry.

	DSE8 : ELEMENTS OF GEOCHEMISTRY (Credit: 6)		
Unit	Topics to be covered	No. of hours	
1	• The Periodic Table: Introduction to properties of elements,	10	
	• Nucleosynthesis: Cosmic, Stellar, Explosive		
	Cosmic abundance of element; Oddo-Harkin's Principle		

2	• Geochemical classification of elements: Atmophile, Lithophile,	14
	Chalcophile, Siderophile	
	Partition Coefficient: Compatible & Incompatible Elements	
	Geochemical Cycle	
3	Meteorites & its Composition	10
	• Composition of the Earth's Crust: <i>Continental & Oceanic</i>	
	Composition of the Earth's Mantle & Core	
4	• Aqueous Geochemistry: Basic concepts, Ionic & Redox	12
	potential, pH	
	Basics of Isotope Geology	
	Radiogenic & Stable isotopes	
5	Fundamentals of Environmental Geochemistry	14
	Composition of the Atmosphere	
	Composition of the Biosphere	
	TOTAL	60

- 1. Mason, B. (1986). Principles of Geochemistry. 3rd Edition, Wiley, New York.
- 2. *Rollinson, H. (2007). Using geochemical data evaluation, presentation and interpretation.* 2nd Edition. Publisher Longman Scientific and Technical.
- 3. Walther, J. V. (2009). Essentials of geochemistry. Jones and Bartlett Publishers.
- 4. Albarede, F. (2003). Geochemistry: an introduction. Cambridge University Press.
- 5. Faure, Gunter and Teresa M. Mensing (2004). Isotopes Principles and Applications. Wiley India Pvt. Ltd

DSE9 : URBAN GEOLOGY

Course Outcomes

- **CO1:** Explain the role of geological phenomenon in urban life.
- **CO2:** Correlate water and soil contamination due to urbanization and natural hazards control in urban center.

DSE9 : URBAN GEOLOGY (Credit: 6)		
Unit	Topics to be covered	No. of hours
1	Role of Geology in Urban life.	12
	• Geological feature and mapping for subsurface in	
	Metropolitan areas.	
	Geotechnical site characterization	
2	• Soil: Definition, Types ; Soil Horizon	10
	Chemistry of Soil	
	• Effect of pollutants on Agriculture	
3	Geological problems in construction of underground	12
	structures in urban areas	
	• Underground Constructions in Urban areas : Rail and Road	
4	• Sources of contamination of water in Urban Areas	12
	• Standards of water: drinking and irrigation purpose	
	Waste water Treatment	
5	• GIS – Introduction & Application in Urban development	14
	• Seismic Hazards: Micro-zonation of hazard based on	
	engineering, geological features	
	Precaution from Seismic Hazard in Urban Planning	
	TOTAL	60

- 1. Huggenberger, P. and Eptin, J. 2011. Urban Geology: Process-Oriented Concepts for Adaptive and Integrated Resource Management. Springer
- 2. Lollino, G. et al. (Ed.), Engineering Geology for Society and Territory. Springer

DSE10 : FIELD WORK / TRAINING / DISSERTATION / PROJECT / INTERNSHIP (Credit: 6)

GE1 : FUNDAMENTALS OF THE EARTH SYSTEM

Credit: Theory (4) Practical (2) Same as CC – 1

GE2 : GEOMORPHOLOGY AND GEOTECTONICS

Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** Explain and classify different landforms.
- **CO2:** Understand the evolution of the continents and Ocean basins
- **CO3:** Explain tectonic evolution with geologic time.

GE2 : GEOMORPHOLOGY AND GEOTECTONICS (Credit: 4)		
Unit	Topics to be covered	No. of hours
1	Basic principles of GeomorphologyEndogenic geomorphic processes; Diastrophism	12
	• Exogenic geomorphic processes; Weathering, mass wasting, Erosion	
2	 Geomorphic cycles Brief study of the following: <i>Causes of Rejuvenation</i>, <i>Peneplanation, Relief of ocean floor</i> 	12
3	 Geological work of: river, wind, glacier Drainage patterns and their significance 	12
4	 Elementary idea of continental drift, sea floor spreading Basic concepts of Plate tectonics; Plate margins Mountains – Types, character and origin 	12
	TOTAL	48

- 1. Beloussov, V.V., (1980). Geotectonics, Springer-Verlag Berlin Heinemann
- 2. Chorley, R. J., (1984) Geomorphology. Methuen.
- 3. Gass I.G., Understanding the Earth. Artemis Press (Pvt.) Ltd. U.K.

- 4. M.A. Summerfield (1991) Global Geomorphology. Wiley & Sons.
- 5. Moores, E. M. and Twiss, R. J., (1995). Tectonics, W. H. Freeman
- 6. Robert S. Anderson and Suzzane P. Anderson (2010): Geomorphology The Mechanics and Chemistry
 - of Landscapes. Cambridge University Press.
- 7. Singh, S. : Physical Geography
- 8. Selby, M. J., (1996) Earths Changing Surface. Oxford University Press, UK
- 9. Thornbury, W. D., (1997) Principles of Geomorphology, Wiley eastern Limited, New Delhi
- 10. Valdiya, K.S., (1984). Aspects of Tectonics, Tata McGrath Hills
- 11. Verma, V. K., (1986) Geomorphology Earth Surface processes and form. McGraw Hill.
- 12. Wiley : Dynamic Earth

GE2 : GEOMORPHOLOGY AND GEOTECTONICS (Practical) (Practical: 2 credits)

Practical :

1. Physiographic division & drainage system on outline map of Bihar. Study of different plate boundaries on world map

GE3 : MINERALOGY

Course Outcomes

- **CO1:** Gain comprehensive ideas about silicates and their classification
- CO2: Explain different properties of minerals
- CO3: Understand various crystals structure & crystal system

GE3 : MINERALOGY		
Unit	(Credit: 4) Topics to be covered	No. of hours
1	 Minerals – Definition and physical properties – <i>forms, colour, streak, luster, cleavage, fracture, hardness, specific gravity etc.</i> Moh's scale of hardness Isomorphism and Polymorphism 	10
2	 Crystal – Definition, faces, edges & solid angles, crystallographic axis, crystallographic planes, crystal notations Symmetry elements: axis-, plane- and center of symmetry Laws of crystallography Contact goniometer and its use Introduction to the crystal system; Study of the normal class of the following crystal systems: <i>Isometric system, Tetragonal system, Orthorhombic system.</i> 	14
3	 Propagation of light through minerals; Nicol prism Petrological Microscope and its function Study of important optical properties – <i>Relief, Pleochroism,</i> <i>Interference colour, Double refraction and Extinction</i> 	12
4	 Structural Classification of silicates. Mineralogy of important group of rock forming minerals with reference to <i>composition, structure, physical and optical properties</i> – Pyroxene, Amphibole, Feldspar, Silica polymorph. 	12
	TOTAL	48

- 1. Berry and Mason, (1961). Mineralogy. W. H. Freeman & Co.
- 2. Dana, E.S. and Foo, W.E., (2002). A Textbook of Mineralogy
- 3. Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the rock-forming minerals (Vol. 696). London: Longman.
- 4. Flint, Y., (1975). Essentials of crystallography, Mir Publishers.
- 5. Kerr, B. F. (1995). Optical Mineralogy. McGraw-Hill, New York
- 6. Philips, F.C., (1963). An introduction to crystallography. Wiley, New York.
- 7. Perkin D. (2010) Mineralogy. Pearson
- 8. Ram S. Sharma and Anurag Sharma (2013) Crystallography and Mineralogy Concepts and Methods. Text Book Series, Geological Society of India, Bangalore
- 9. Read, H. H., (1968) Rutley's Element of Mineralogy. Thomas Murby and Co.
- 10. Verma, P. K. (2010). Optical Mineralogy (Four Colour). Ane Books Pvt Ltd.

GE3 : MINERALOGY (Practical) (Practical: 2 credits)

Practical :

- 1. Crystal drawing of the following forms: Cube, Octahedron, Rhombdodecahedron, Zircon
- 2. Study of Physical properties of the following minerals : Quartz, Orthoclase, Microcline, Feldspar, Muscovite, Biotite, Hornblende, Tremolite, Actinolite, Olivine, Calcite, Gypsum, Talc, Fluorite, Apatite, Topaz, Corundum, Baryte, Kyanite, Tourmaline, Garnet, Magnetite, Hematite, Chalcopyrite, Pyrite, Bauxite, Chromite, Pyrolusite, Psilomelane.
- 3. Microscopic Study of the common rock forming minerals.

GE4 : STRUCTURAL GEOLOGY

Credit: Theory (4) Practical (2)

Same as CC - 4

GE5 : REMOTE SENSING & GIS

Credit: Theory (4) Practical (2)

Same as DSE - 1

GE6 : ENVIRONMENTAL GEOLOGY AND GEOGENIC DISASTER

Credit: Theory (6)

Same as DSE - 5

GE7 : PETROLOGY

Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** Understand the concept of different rock types.
- **CO2:** Explain factors and processes of magma generation.
- **CO3:** Understand various classification of igneous rocks.
- **CO4:** Explain ideas of metamorphism and different type of metamorphic rock.

GE7 : PETROLOGY (Credit: 4)		
Unit	Topics to be covered	No. of hours
1	• Introduction to Petrology- distinguishing features of three types of rocks.	8
	• Magma – Definition, Types and Composition	
	Bowen's Reaction Principle	
2	• Form, Structure and Texture of Igneous rock	12
	• IUGS classification of Igneous rock.	
	• Petrographic description of the following rock types :	
	Granite, Rhyolite, Syenite, Diorite, Gabbro, Basalt,	
	Granodiorite, Dolerite	
3	 Definition and formation of Sedimentary Rocks 	14
	Texture and structure of Sedimentary rocks	
	Classification of Sedimentary rocks	
	• Petrographic study of the following rocks:-	
	Conglomerate, Sandstone, Limestone, Breccia, Shale.	
4	• Metamorphism – definition, agents and types	14
	Texture and Structure of Metamorphic rocks	
	Classification of Metamorphic rocks	
	• Petrography of the following metamorphic rocks :	
	Slate, Phyllite, Schists, Gneisses, Amphibolite,	
	Granulite, Marble, Quartzite, Charnockite	
	TOTAL	48

- 1. Allen, J.R.L., (1985). Principles of Physical Sedimentology. George Allen and Unwin, London Blatt, Ehler: Petrology (Igneous, Sedimentary and Metamorphic)
- 2. Blatt, Ehler: Petrology (Igneous, Sedimentary and Metamorphic)
- 3. Boggs, S.: Petrology of Sedimentary Rocks, Cambridge University Press.
- 4. Bose M.K. (1997). Igneous Petrology Huang : Petrology
- 5. Harker : Petrology for students
- 6. McBirney, A. R. (1984). Igneous Petrology. San Francisco (Freeman, Cooper & Company) and Oxford (Oxford Univ. Press),
- 7. Myron G. Best (2001). Igneous and Metamorphic Petrology,
- 8. Nockolds, Chinner and Kinox: Petrology for students
- 9. Pettijohn, F. J., (1984) Sedimentary rocks, Harper & Bros Raymond, L. A. (2002). Petrology: the study of igneous, sedimentary, and metamorphic rocks. McGraw-Hill Science Engineering.
- 10. Sengupta, S. M., (2007). Introduction to Sedimentology, CBS Publishers and Distributor, New Delhi Tyrell, G.W. : Principles of Petrology
- 11. Winter, J. D. (2014). Principles of igneous and metamorphic petrology. Pearson.

GE7 : PETROLOGY (Practical) (Practical: 2 credits)

Practical :

- Megascopic study of the following rocks:
 - Granite, Rhyolite, Diorite, Gabbro, Basalt, Granodiorite, Dolerite, Conglomerate, Breccia, Sandstones, Greywacke, Limestone, Dolomite, Shale., Slate, Phyllite, Schist, Gneisses, Marble, Charnockite, Amphibolite
- Microscopic study of the following rocks:
 - Granite, Diorite, Gabbro, Basalt, Granodiorite, Dolerite, Syenite, Sandstone, Orthoquartzite, Arkose, Greywacke, Limestone, Schists, Gneisses, Amphibolite, Charnockite,

GE8 : ECONOMIC GEOLOGY AND HYDROGEOLOGY

Course Outcomes

After the completion of the course, the student will be able to:

- CO1: Understand classification of mineral deposits and their processes of formation.
- **CO2:** Gain a comprehensive idea about genesis and distribution of major ore minerals and associated host rocks.
- CO3: Explain basic concepts of hydrogeology
- CO4: Appreciate properties of water bearing geological formation

GE8 : ECONOMIC GEOLOGY AND HYDROGEOLOGY (Credit: 4)		
Unit	Topics to be covered	No. of hours
1	 Concept of Ore, Ore mineral, Gangue, Tenor of Ores. Forms and structure of ore deposits. Classification of Ore deposits 	10
2	 An elementary idea of the processes of formation of mineral deposit with special reference to- <i>Magmatic concentrates, Supergene sulphide enrichments,</i> <i>Placer deposits</i> Study of the properties and distribution of the following economic minerals: <i>Talc, Gypsum, Calcite, Fluorite, Apatite, Felspar, Quartz,</i> <i>Topaz, Corundum, Chromite, Beryl, Barite, Kyanite,</i> <i>Pyrolusite, Psilomelane, Mica, Hematite, Magnetite,</i> <i>Chalcopyrite, Bauxite, Graphite, Galena</i> 	14
3	 Hydrogeology: concepts, scope and its societal relevance Hydrologic cycle: precipitation, evapo-transpiration, infiltration, run-off and subsurface movement of water Hydrogeological properties of water-bearing formation: Porosity, Permeability 	14
4	 Physical and chemical properties of water Origin and types of Groundwater: <i>Juvenile water, Connate water, Meteoric water, Vadose water</i> Groundwater resources of Bihar 	10
	TOTAL	48

- 1. Brown, C. and Dey, A.K.: Indian Mineral Wealth
- 2. Davis, S. N. and De Weist, R.J.M. 1966. Hydrogeology, John Wiley & Sons Inc., N.Y.
- 3. Evans, A.M. (1993) Ore Geology and Industrial minerals. Wiley

- 4. Jenson and Bateman: Economic Mineral Deposits
- 5. Karanth K.R., 1987, Groundwater: Assessment, Development and management, Tata McGraw Hill Pub. Co. Ltd.
- 6. Prasad, U.: Economic Geology
- 7. Raghunath: Hydrology
- 8. Riley, Charles M.: Our Mineral Resources
- 9. Sinha and Sharma: Mineral Economics
- 10. Todd, D. K. 2006. Groundwater hydrology, 2nd Ed., John Wiley & Sons, N.Y.

GE8 : ECONOMIC GEOLOGY AND HYDROGEOLOGY (Practical) (Practical: 2 credits)

Practical :

- Observation of the following economic minerals with reference to their physical properties : Talc, Gypsum, Calcite, Fluorite, Apatite, Topaz, Corundum, Beryl, Barite, Kyanite, Sillimanite, Hematite, Magnetite, Chromite, Chalcopyrite, Malachite, Azurite, Bauxite, Galena, Pyrite.
- Groundwater provinces on the map of India.

GE9 : PALAEONTOLOGY AND STRATIGRAPHY

Course Outcomes

After the completion of the course, the student will be able to:

- **CO1:** Unravel the geological events of the past.
- **CO2:** Explain the order in which the rock formation formed
- **CO3:** Understand the idea of Geological evolution of India.
- **CO4:** Explain the evolution of life through study of fossils.

GE9 : PALAEONTOLOGY AND STRATIGRAPHY (Credit: 4)		
Unit	Topics to be covered	No. of hours
1	Definition and Types of Fossil	10
	Condition of Fossilization and Modes of preservation of fossils	
	Uses of Fossils	
2	Classification, Morphology and Geological history:	14
	Gastropoda, Bivalvia, Cephalopoda, Brachiopoda, Trilobita	
3	Definition, Principles of Stratigraphy	12
	Methods of Stratigraphic correlation	
	Geological Time Scale	
	• Brief idea about Lithostratigraphy, Biostratigraphy and	
	Chronostratigraphy	
4	• An outline of Indian stratigraphy with special reference to -	12
	Archaean of Singhbhum, Proterozoic basin of	
	Vindhyan, Gondwana Supergroup, Siwalik Group	
	TOTAL	48

- 1. Clarkson, E. N. K. (2012) Invertebrate paleontology and evolution 4th Edition by BlackwellPublishing.
- 2. Doyle, P. & Bennett, M. R. (1996) Unlocking the Stratigraphic Record. John Wiley
- 3. Krishnan, M. S. (1982) Geology of India and Burma, CBS Publishers, Delhi
- 4. Ramakrishnan, M. &Vaidyanadhan, R. (2008) Geology of India Volumes 1 & 2, Geological society of India, Bangalore.

- 5. Raup, D. M., Stanley, S. M., Freeman, W. H. (1971) Principles of Paleontology
- 6. Shukla, A. C., & Misra, S. P. (1975). Essentials of paleobotany. Vikas Publisher
- 7. Valdiya, K. S. (2010) The making of India, Macmillan India Pvt. Ltd
- 8. Woods, Henry : Invertebrate Palaeontology

GE9 : PALAEONTOLOGY AND STRATIGRAPHY (Practical) (Practical: 2 credits)

Practical :

- > Distribution of Stratigraphic formation on the outline map of India.
 - Dharwar, Singhbhum, Cudappah, Vindhyan, Gondwana
- Study of stratigraphic rocks of
 - Khondalite, Singhbhum Granite, Kolhan conglomerate, BHJ, BHQ, Vindhyan Sandstone, Rohtas Limestone, Talchir sandstone, Barakar sandstone, Rajmahal Traps
- > Identification of fossils and their geological age: invertebrate, vertebrate, plant fossils
- Drawing of fossils based on morphological features.