PATNA UNIVERSITY

COURSES OF STUDY

B．A／B．SC．MATHEMATICS

HONOURS PART－I，II \＆III
\＆
SUBSIDARY PART I \＆PART－II

贯沙位

MATHEMATICS B.A./B.Sc. PART I MATHEMATICS (HONOURS COURSE)

Stress should be given on development of ideas and theories rather than on solving dimizuil problems. Problems should be short and illustrative to theories.
Honours course for Part I will consist of two papers.

1.1	Set Theory	-4 Questions (Group A)
1.2	Algebra 1	-4 Questions (Group B)
1.3	Algebra 2	-4 Questions (Group C)

There will be twelve questions in the paper in three groups i.e A, B and C . The examine will we required to answer six questions, selecting at least one from each group.
1.1 Set Theory:- General form of De-Morgan's laws, Fundamental Theorem on epat al: relation, Partial and Total order relation, Maximal and Minimal element in a prial! ordered set, Composition and factorization of mappings, set mapping, Countable and uncountable set, Countability of rational, real and algebraic number systems. Countalility of union and cartesian product of sets. Domination and cardinality, Cantor's therren. Schroeder - Bernsteirn theorem Sum and product of cardinal numbers, Cardinitlit ol power set of a set. (3 Questions)
Concept of a Fuzzy set, Fuzzy power set, Relation between Fuzzy sets, Operations en Fuzzy sets. Height, core and support of a Fuzzy set. (1 Question)
1.2 Algebra 1:- Division algorithm, Euclidean algorithm. Euclid's lemma, Notion o gru.p: with examples, Residue classes, Formulation of groups, Elementary propertie of gro ps. cancellation laws, Solvability of equations, Subgroups, cyclic group, order of an chert Cosets and Lagrange's theorem, Homomorphism and Isomorphism of groups. Nermi: subgroup ,Quotient subgroup ,Fundamental theorm of homomorphism of groups (Nleys theorem. (3 Questions).

Relation between roots and coefficients of a polynomial equation,
Evaluation of symmetric functions of roots, Solution of cubic equation
(Cardon's method) and bi-quadratic equation (Euler's method) (1 Question).
1.3 Algebra 2:- Notion of Rings, Integral domain, field and their general propertics and illustrations, Subrings and subfields Homomorphism and Isomorphism of rings. Kemels and Ideals. Quotient ring and Fundamental theorem of homomorphism of rins; $\hat{3}$ Questions)

Trigonometry:- De-Moivre's theorem and its applications, Hyperbolic functions. (irent: Series, Summation of Trigonometric series (1 Question).

Paper II

2.1	Calculus	-	8 Questions(Group A)
2.2	Geometry	-	4 Questions(Group B)

There shall be twelve questions in the paper consisting of two groups A and B. The examinees will be required to answer six questions, selecting at least two from Grelp A and one from Group B .

2.1 Calculus

Differential Calculus Successive differentiation and Leibnitz's theorem, Tangent and Normal, Partial differentiation, Euler's theorem, exact differential, Indeterminatis forms and L'Hospital rule, Curvature, Convexity of functions, Asymptotes. (3 Questions) Integral Calculus Evaluation of definite integrals, Reduction formulae, Curve tracing. rectification and Quadrature, volumes and surface areas of solids of revolution. Vultiple integrals and change of order of integration, Improper integrals, M.I.,C.G Beti: \&. (;uinia functions (3 Questions)

Vector Calculus: Product of Three \& Four vectors, Differentiation of vector point functions, differentiation of product of vectors, Gradient of a scalar and Divergence $\& \in(u r$! of a vector in Cartesian coordinates. (2 Questions)

2.2 Geometrv:

Analytical Geometry of two dimensions: Transformation of rectangular axes, General equation of second degree and its reduction to normal form. Systems of Conics, Polar equation of a conic, tangents and normals. (2 Questions)
Analytical Geometry of Three dimensions: Sphere, Cone, Cylinder, standard equations of conicoids, Normal and conjugate diameters of an ellipsoid.
(2 Questions:

B.A./B.Sc. Part I - Mathematics (Subsidiary)

Stress should be given on development of ideas and theories, rather than on solving problems. Problems should be short and intelligent.

Paper I- 100 marks

1.1 Set Theory and Matrices
1.2 Calculus 1
1.3 Algebra
1.4 Real Analysis and Geometry -

- $\quad 3$ Questions (Group A)
- 3 Questions (Group B)
- $\quad 3$ Questions (Group C)

3 Questions (Group D)

The question paper will be divided into Four Groups $A ; B, C$ and D respectively. The examinees will be required to answer six question selecting at least one from each group.
1.1 Set Theory and Matrices: General form of De Morgan's laws, Equivalence relation.

Fundamental theorem on equivalence relation, composition and Factorization of mapping Set mapping, Countability of rational, real and algebraic number systems.(2 Questions)
Kinds of matrices, transpose, adjoint and inverse of a matix. Solution of consistent system of linear equations in two and three variables.(1 Question).

1.2 Calculus 1: Successive differentiation, Leibnitz theorem, Taylor's and Maclaurit's ser is,

 Partial derivatives, Euler's theorem, indeterminate forms, Tangents and Normals Aymprotes. radius of curvature in different coordinate system. (2 Questions).Triple product of vectors, differentiation of vector point functions, Differentiation ot product of vectors, Gradient of a scalar, Divergence and curl of vectors in cartesian coordinates. (1 Question)
1.3 Algebra: Defination of a group with examples, Abelian and non-abelian, groups, cancellation laws, definition of subgroup and cyclic group with examples. Definition of ring, integral domain and field with examples. (2 Questions)
Trigonometry: De-Moivre's theorem and its application, Expansions of minx, coss and lan x complex argument, trigonometric function of complex angles, Hyperbolic functions. Gregory's series, summation of series. (1 Question).

1.4 Real Analysis and Geometry

Real Analysis: Sequence of real numbers and their limits, bounded sequence, monotonic sequence, Cauchy's general principle of convergence, convergent and divergent series. convergence of series of positive terms, comparison test, Cauchy's root test, D'Alemiett's atc

test and Raabe's test, Alternating series and Leibnitz teëst, Absolute convergence of serics differentiability of real function of one variable. (3 Questions) Analytical Geometry of Two dimensions: General equation of second degree \& its :eciuction to standard forms, Tangens and normals. (1 Question)

[^0]
B.A./B.Sc. PART II MATHEMATICS (HONOURS COURSE) Part II

Honours Course of Part II will consist of two papers.

Paper III (100 marks)

3.1 Linear Algebra - 4 Questions (Group A)
3.2 Real Analysis - 4 Questions (Group B)
3.3 Sequence and series - 4 Questions (Group C)

3.1 Linear Algebra :

Orthogonal matrix and their properties, Elementary transformation and elementary martins. Rank of matrix, solution of linear equations. (1 Question)
Definition, examples and simple properties of vector space, vector subspaces and linear combination, sum and direct sum, linear independence, Basis and dimension of finite! y generated vector space, linear transformations, their nullity and rank, quotient space.

Characteristic equation of a matrix, eigen values and eigen vectors, Cayley-Hamiton theorem. solution of system of linear, homogeneous and non-homogeneous equations. Dimensions of tic space of solution of $A X=B$. (3 Questions)

3.2 Real Analysis:

Dedekind theory of real numbers, Algebraic and order properties of real numbers, Theorems on l.u.b and g.l.b, Dedekind's theorem, Fundamental theorem of classical analysis. Arch intedean property of real numbers, properties of open sets and neighbourhoods in R , Accumulation point of a set, Bolzano- Weierstrass theorem compact sets in R, Heine Botel Theorem. Properties al continuous and discontinuous real functions of two variables, Boundedness of continuations functions, Intermediate value theorem, Mean value theorem, Taylor's theorem with the remainder of Lagrange's and Cauchy's forms, Taylor and Maclaurin's series. (4 Questions)

3.3 Sequence and Series:

Sequene and its convergence, Cauchy's sequence, Cauchy's general principle of convergence, Monotonic sequence, Limit superior and limit inferior.

Infinite series and their convergence comparison test, Cauchy's root test. Ration lest. Gauss's ratio test, Mummer's test, De-Morgan and Bertrand test, Logarithmic ratio test. Cauchy's condensation test, Leibnitz test, Absolute convergence and conditionally convergent series, Dirichlet's theorem, Multiplication of series, Cauchy, Abel and litic!lel tests. (4 Questions)

Paper IV (100 marks)

4.1 Differential Equations-

4 Questions(Group A)
4.2

Vectors \& Statics
4 Questions (Group B)
4.3

Dynamics
4 Questions(Group C)
There will be twelve questions consisting of three groups A, B and C, Exanitres will le. to answer six Questions selecting at least one from each group.
4.1 Differential equations:- Exact differential equations, Equations of first order hit not of the first degree, Clairaut's form, orthogonal trajectory, singular solutions. Linear differential equations of the second order with constant coefficients an. 1 variable coefficients, Method of variation of parameter.
(4 Questions)
4.2 Vectors and Statics:- Integrals of vector functions, line, surface and volume integrals, Gauss, Green and Stokes theorems.
(1 Question)
Reduction of a system of coplanar forces, equation of the line of action of the resultant, virtual work, Principle of virtual work for a syster: of particles, Stable and unstable equilibrium, Energy test of stability (Problem; involving one variable only), Common catenary. (3 Questions)
4.3 Dynamics: Rectilinear motion in a non-resisting and a resisting medium. Harmonic oscillator, damped and free vibrations, elastic strings and springs, vertical and horizontal motion of a particle attached to an elastic string.
Motion in a plane, velocities and accelerations in cartesian, polar and intrinsic co-ordinates, motion of a projectile in non-resisting and resisting medium. constrained motion in a smooth horizontal and vertical circle, simple penduluris . Motion: of a particle under a central force, differential equation of a central orbit in rectilinear. polar and pedal coordinates, Central orbits, Kepler's laws of motion deduced lion: Newton's law of Gravitation and vice-versa. (4 Questions)

B.A./B.Sc. Part II - Mathematics (Subsidiary)

 Paper II (100 marks)2.1

Calculus II

- $\quad 4$ Questions(Group A)
2.3 Differential Equations
\& Linear Programming - 4 Questions(Group B)
2.3 . Mechanics \& Geometry - 4 Questions(Group C)

The question paper will be divided into three groups A, B and C . The examine ss will be: required to answer six questions, selecting at least one from each group.
2.1 Calculus II: Reduction formulae, Rectification and Quadrature, volume ant surface area of solids of revolution, moment of inertia and centre of gravity simple use of double and triple integration, Beta and Gamma function.
Questions)
2.2 Differential Equations: Exact differential equation, Differential equations of list order but not of first degree, Clairaut's form, orthogonal trajectories linear, differential equations of higher order with constant coefficients.
Linear Programming: Convex set, Convex Combination, Properties of convex sets Linear Programming problem(LPP)- its formulation, and solution by graphical method \& simplex method. (2 Questions)
2.3 Mechanics :Reduction of a system of coplanar forces, equation of line of ace inn of resultant, Principle of virtual work. (1 Question)

Rectilinear motion in non-resisting and resisting medium, elastic string and spring Horizontal and vertical motion of a particle attached to an elastic string. (1 Question)

Motion in a plane, components of velocity and acceleration in cartesian, polar and intrinsic coordinates .(1 Question)
Analytical Geometry of three dimensions: Standard equation of sphere, conte and cylinder, equation of their tangent planes. (1 Question)

BA/B.Sc. Part III : Mathematics (Honours)
 Time: 3 Hours
 Paper V
 Full Marks : 100

1. Theory of Metric spaces
2. Riemann Integration
3. Infinite Series
4. Fourier Series and Function of

Bounded variation
-5 Question (Group A)

- 2 Questions (Group B)
- 3 Questions (Group C)
- 2 Questions (Group D)
*

There will be twelve questions divided in four groups $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . Examines will be required to answer six questions selecting atleast one from each group.

1. Theory of Metric spaces.

Definition and examples of metric spaces. Notion of open sphere and open sets Neighbourhood in a metric space and their properties. Derived set, Closed set and closure in a metric space and their properties. Convergence of sequence in a metric space, continuis mapping in a metric space, their characterization by pen sets and closed sets. Characterization of continuity in terms of convergent sequence, properties of completeness including Cantor's intersection theorem and Bare's category theorem Banach fixed point theorem. 15 Questions:
2 Riemann Integration: Definition and existence of Riemann Integral of bounded functions. Darbourx's theorem Necessary and Sufficient condition for R-Integrability. Ricm:nun integrability of continuous functions, Monotonic function and function having finite number of discontinuites. Riemann integral as the limit of a sum, fundamental theorem of integral calculus. Mean value theorem.(2 Questions)
3. Infinite Series: Integral test for series of arbitrary terms, Euler's constant, Riemann's theorem and Pringsheim theorem on rearrangement of terms of conditionally convergent series. Dirichlet's and Abel's tests for series of arbitrary terms, Infinite product and ils comerecicc. Double series, sum by rows, sum by columns and sum by rectangles.(3 Questions)

4. Fourier series and Functions of bounded variation

Fourier series for odd and even functions, Half range series, other forms wi Fouric: se ic: Functions of bounded variation. (2 Questions)

Paper VI
 Time : 3 Hours Full Marks : 100

1 Algebra III - 5 Questions (Group A)
2 Number theory- 3 Questions (Group B)

3 Complex Analysis- 4 Questions (Grour C)

There will be twelve questions divided into three groups A, B and C .1 xaminees will be required to answer six questions, selecting atleast one from each group.

1. Algebra III

Coset of a Group, automorphism of a group, inner automorphism, Relation of Conjugacy on a group, Normalizer of a subgroup, centralizer of an element in a group.
Class equation of a group, Quotient field of an integral domain, Inbedding of an interai domain in a field, characteristic of a ring and an integral domain, polynomial rines. division algorithm, Sylow's theorem.(5 Questions)

2. Number theory.

Division algorithm, Euclidean algorithm and Greatest Common Divisior (GCD) or HCF). Diophantine equations, Prime and composite numbers, unique factorization theoren: (Fundamental theorem of arithmetic), Co-primes, Divisors of a composite number. Wetinition of congruence modulo m and its properties, solution of linear congruence, complete Residue system modulo m, Reduced Residue system. Chinese Remainder theorem, Euler's theoren. Fermat's (little) theorem, Wilson's theorem.(3 Questions)

3. Complex Analysis.

Continuity and differentiability of function of a complex variable. Analyuc functim. Cauchy-Riemann differential equation, Integration of a complex function, Cauchy's in:Leyral theorem, Morera's theorem, Liouville theorem, Cauchy integral formula, Higher orde; derivatives, Singularities of an analytic function, Taylor's and Laurent's expansion, Fundamenta! theorem of algebra, Poles and residues.(4 Questions)

Paper VII
 Time : 3 Hours Full Marks : 100

1. Linear Programming : 3 Questions (Grsup A)
2. Differential Equations II : 4 (Guestions (Group B)
3. Attraction and Potential -2 Questions (Group C)
4. Hydrostatics - 3 Questions (Group D)

There will be twelve questions divided into four groups A, B, C and D. Examinees will be required to answer six questions,selecting atleast one from each group.

1. Linear Programming.

Convex sets and their properties, Linear programming and their graphical solution. Theory of simplex method and their applications. Transporation and Assignment problems.
(3 Questions)

2. Differential Equations II

Total differential equations in three independent variables, simultaneous differential equations. Lagrange's linear partial differential equation, standard forms, Charpit's methoci. partial differential equation of higher order with constant coefficients. Monge's methoc, soluion in series. (4 Questions)

3. Attraction and Potential

Attraction and Potential of rods, rectangles and circular discs, spherical sheil, sphere, Laplace's and Poisson's equations, theorems on equipotential surfaces. (2 Questions)

4. Hydrostatics.

Fluid preasure, thrust on plane surfaces, centre of pressure, Equilibrium of fluids in a given field of forces, Equilibrium of floating bodies, Resultant thrust on curved surface. itiscs.

Paper VIII
 Time : 3 Hours (Optional Paper) Full Marks : 100

In this paper the students will study any one of the following.

1. Numerical analysis
2. Spherical Astronomy.
3. Probability theory.
4. Computational methods.
5. Biomathematics.
6. Linear Programming and its application in theoretical Economics.
7. Partial differential Equations of Mathematical Physics.

Paper VIII

1. Numerical Analysis.

Finite Central and divided differences, Interpolation, Inverse Interpolation, Numerical differentiation, Numerical Integration. Trapezoidal rule, Simpson's one third and three-cight rules, Weddel's rule, Gauss quadrature formula of Integration, Gregory's formula and EulerMaclauin's formula

Solution of difference equation of the first order, General solution, Linear difference equation with constant co-efficents, Solution of ordinary differential equations out step method :Euler's modified, Picard's, Runge-kutta methods, Methods of starting the solution and continuing the solution, Adams Bashforth, Milne's method.

Simultaneous linear equations,: Gauss elimination method, Jordan method ,Gills: Seidel an Relaxation methods(Simple problems).

Finding roots of Transcendental and Polynomial equation. Regula Falsi, Bisection. Newton-Raphson method, Ierative method and its generalization. Chebyshev's .Birge-victa. Lin-Bairstow's, Graeffe's root squaring method and their convergence .

Note: If a student opts for other optional, syllabus will be provided by the department.

[^0]:

